Microevolution of intermediary metabolism: evolutionary genetics meets metabolic biochemistry.
نویسنده
چکیده
During the past decade, microevolution of intermediary metabolism has become an important new research focus at the interface between metabolic biochemistry and evolutionary genetics. Increasing recognition of the importance of integrative studies in evolutionary analysis, the rising interest in 'evolutionary systems biology', and the development of various 'omics' technologies have all contributed significantly to this developing interface. The present review primarily focuses on five prominent areas of recent research on pathway microevolution: lipid metabolism and life-history evolution; the electron transport system, hybrid breakdown and speciation; glycolysis, alcohol metabolism and population adaptation in Drosophila; chemostat selection in microorganisms; and anthocyanin pigment biosynthesis and flower color evolution. Some of these studies have provided a new perspective on important evolutionary topics that have not been investigated extensively from a biochemical perspective (hybrid breakdown, parallel evolution). Other studies have provided new data that augment previous biochemical information, resulting in a deeper understanding of evolutionary mechanisms (allozymes and biochemical adaptation to climate, life-history evolution, flower pigments and the genetics of adaptation). Finally, other studies have provided new insights into how the function or position of an enzyme in a pathway influences its evolutionary dynamics, in addition to providing powerful experimental models for investigations of network evolution. Microevolutionary studies of metabolic pathways will undoubtedly become increasingly important in the future because of the central importance of intermediary metabolism in organismal fitness, the wealth of biochemical data being provided by various omics technologies, and the increasing influence of integrative and systems perspectives in biology.
منابع مشابه
Life-history evolution and the microevolution of intermediary metabolism: activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket.
Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable...
متن کاملWhat is Nutrition & Metabolism?
A new Open Access journal, Nutrition & Metabolism (N&M) will publish articles that integrate nutrition with biochemistry and molecular biology. The open access process is chosen to provide rapid and accessible dissemination of new results and perspectives in a field that is of great current interest. Manuscripts in all areas of nutritional biochemistry will be considered but three areas of part...
متن کاملPromise and Reality in the Expanding Field of Network Interaction Analysis: Metabolic Networks
In the last few decades, metabolic networks revealed their capabilities as powerful tools to analyze the cellular metabolism. Many research fields (eg, metabolic engineering, diagnostic medicine, pharmacology, biochemistry, biology and physiology) improved the understanding of the cell combining experimental assays and metabolic network-based computations. This process led to the rise of the "s...
متن کاملPersonalized nutrition and its roles on some metabolic disorders: A narrative review
Introduction: Considering an individual’s characteristics such as genetics along with other characteristics and dietary habits can help to provide an effective diet for prevention and controlling metabolic disorders. Accordingly, in the present study, we aimed to review evidence on personalized nutrition (PN) and its roles in metabolic disorders. Materials and Methods: In the present narrative ...
متن کاملAn Evolutionary Relationship Between Stearoyl-CoA Desaturase (SCD) Protein Sequences Involved in Fatty Acid Metabolism
Background: Stearoyl-CoA desaturase (SCD) is a key enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids (MUFAs) in fat biosynthesis. Despite being crucial for interpreting SCDs’ roles across species, the evolutionary relationship of SCD proteins across species has yet to be elucidated. This study aims to present this evolutionary relationship based on amino aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 2 شماره
صفحات -
تاریخ انتشار 2011